Selection, Sociality, and Systems

Recently, I have been trying to wrap my head around some of the major tenets of biology, I have enjoyed it so much that I commented to someone close to me that I was sad I chose economics for my PhD, I would have enjoyed biology with equal fervor. Nevertheless, I am in a pursuit to connect the various themes of the fields and create a stronger stance for both. We are, after all, a species of biological organisms whose very survival is dependent on our interactions. It is interesting to note the variety of systems of organization and hierarchy found throughout biology and economics; there seems to be an plethora of solutions to an infinite number of potential problems. Through learning and adaptation, we eventually get to the now. This also must mean that many systems of organization did not make it to the now, they failed to survive. What I mean to uncover in my research is the framework by which social interactions and systems evolve and persist. This is where I begin to look for the interconnections with biology.

I have come across a controversy in biology that hinges on the fitness and adaptability  of species: the debate between group and individual selection. Group selection exists when there is competition not only between individuals but between groups as well. And we know that individuals compete on a number of various levels for both resources and mates. But what about species that have high populations of sterile or non-reproducing organisms like ants or bee? Why would any one ant give up their life in order to save the lives of their fellows?

Hamilton’s theory of kin selection solved that paradox. Hamilton proposed that kin selection was an evolutionary strategy that favors the reproductive success of an organism’s relatives, potentially at the cost of the organisms own fitness or survival. It must be noted that group selection and kin selection are not the same.

Recently, there has been a resurgence in the biology literature on the efficacy of Hamilton’s theory, how these play out in the real world, and how does altruism fit into all of this. The paper that reinvigorated the dormant argument between the different types of selection was published in Nature during August 2010. In “The Evolution Of Eusociality,” Nowak, Tarnita, and Wilson argue that the previous four decades of theorizing using the kin selection theory had serious limitations and perhaps another methodology would be more useful and simpler. This caused a cascade of dissent from the biology community, and rightly so. One cannot shake a beehive and expect the residents to remain content.

The main issue seemed to be with the first half of the paper, which provided plenty points of contention for those who would adamantly disagreed with the paper, but the latter half included a well-developed mathematical framework by which their new theory could be expounded. Unfortunately, many of those who read the first half failed to check the appendix, which being a grad student is something I would forgive them for. (Who has time to check appendices?) The main point of their paper was that kin selection makes far too many simplifying assumptions and that Hamilton’s rule fails to describe a number of interactions that occur in the wild.

Seven years later, Jordana Cepelewicz writes in Quanta about the mathematical underpinnings of the growing debate. She brings in other research and further shows that the assumptions made by Hamilton’s rule fail to take into account a number of phenomena, especially when it comes to offspring:

In other words, it can be more important for an individual’s reproductive success to be consistent on average, rather than simply higher than that of others. In an uncertain environment, the bet-hedging value of helping others starts to look much more appealing as a strategy: It improves the odds that some shared genes will survive even if an individual’s own lineage dies out. Allocating some energy to helping others, even at the expense of further reproductive success, then works as an insurance policy.

There are even more variations when it comes to differences in hives, colonies, and species,

But even so, “there are a lot of subtleties within how those dominance hierarchies form and how those societies maintain stability,” said Sandra Rehan, a biologist at the University of New Hampshire. “It’s much more nuanced than just saying ‘something is social,’ or ‘something is eusocial.’”

She goes on to further claim that uncertainty is apt to breed altruism. This is equivalent to the economics concept of the Folk Theorem: when the end of a game is unknown, cooperation is sustainable. The problem with many one-shot and finite games is that cheating is a sustainable strategy in the last turn, but if someone will cheat in the last turn, why not cheat in the next to last turn and so on. Games of this kind tend to unravel, but if there is some probability of continuing the game, at say the species/multigenerational scale, then it is definitely worth cooperating at the individual level.

Public Choice and the expansion of the government

Why government expands is an important point of discussion in the public choice literature. (Public choice being the application of economic tools onto the realm of political theory and practice.) This question has often been asked by economists and occasionally there is an answer that makes sense, but rarely can we account for all of government growth through the use of a singular theory.

Donald Wittman claims to provide an overarching, mono-causal theory of government expansion: it’s because the people, the voters, want government to expand. An increase in the role government is the reflection of the will of the voters and this expansion supposedly leads to the lowering of transaction costs or opportunity costs of the constituency. Bryan Caplan, Wittman’s nemesis, says that this theory is wrong since we know that voters are absolutely underinformed; he claims that it is too costly for voters to gain information and that there is relatively little benefit to having that information. The logic of collective action is in full swing.

A second theory, purported by Robert Higgs, claims that government has grown during times of emergency and afterwards fails to shrink back down to its previous size. Higgs calls this his “ratchet-model” of government expansion. It can be seen through the lens of history: the US government rapidly expanded during the World Wars and after each of them were over, the size of the federal government shrunk somewhat but never back to the size it was before the onset of war. During each of these national “emergencies,” the government takes on extra roles and duties not previously delegated, only to refuse to relinquish them once the need for that role being filled is over. Whether the government should have occupied that set of duties in the first place is a different question. The ratchet model fails to take into account countries that have not experienced world wars or other national emergencies but have still grown nonetheless.

A third theory of government expansion has been cited by Tyler Cowen. His theory, unlike the previous two, is not mono-causal, but only relates a part of the story. Cowen claims that as technology has advanced, the cost of governing has decreased. This, in turn, has lead to an expansion of powers to places that were previously too costly to govern. Cars, highways, and air travel made far away places accessible within hours or days instead of weeks. Telephones and internet made communication instantaneous. Much of the technical innovation lowers the transaction costs of implementing policies. I am partial to this explanation of government expansion, though, it must be kept in mind that this is only a small part of the story.

Lately, I have been wondering about a more endogenous model of government expansion. Many of us who study public choice often look at the incentive structures of policy and the public realm, but sometimes we miss the forest for the trees. In a democracy, government might expand due to the opinion of the majority at the expense of the minority. Such a case has been theorized since Madison’s Federalist 51 and has been often repeated in various circles as outside threats arise. Madison says, “It is of great importance in a republic not only to guard the society against the oppression of its rulers, but to guard one part of the society against the injustice of the other part. Different interests necessarily exist in different classes of citizens. If a majority be united by a common interest, the rights of the minority will be insecure.”

I think it is improbable that a society can exist for long without having the majority take over large parts of governance without some minority bearing some cost. This is especially true when the minority can be seen as the outgroup. This has been a defining part of history. Many societies have increased the burden on the fringes and minorities of their civilization to prop up the rest or to simply keep the other group down. Medieval Europe, South Africa, Japan, China, the Aztec Empire, the United States, Ancient Greece, the Roman Empire, and the list goes on, have engaged in these kinds of actions. Not every policy action is a pareto improvement, so, someone is hurt, at least in the short run, each time a new policy comes out. What makes this viewpoint different is that entire groups pay the price instead of a small collection of individuals who have no connection other than interest.

The possibility from this kind of policy endeavor rises from the formation of large groups who can at any one time control the majority. Madison continues, “Whilst all authority in it will be derived from and dependent on the society, the society itself will be broken into so many parts, interests, and classes of citizens, that the rights of individuals, or of the minority, will be in little danger from interested combinations of the majority.” If there are not enough interests shared by enough groups and large bundles are instead monopolized under the umbrella of an uber Gruppen, we get a system that prioritizes the majority. In a duopoly, one group can claim to prioritize the wants of the minorities it supposedly represents, but given the a prior fractures among groups this will achieve little and may exacerbate the polarization and fracture of a society. This is especially true of democratic societies in which the median voter model holds true.

In a carbon constrained world, why increase the rate of carbon production?

Since the realization that carbon deposits in the atmosphere could cause global temperatures to rise, there has been increasing conversations on humanity’s role in causing this rise in temperature. We call this the Anthropocene Era, or the span of time in which the activity of humans has and continues to fundamentally alter the state of the world. (For the sake of this conversation, we’re going to assume that the anthropogenic climate change is incontrovertible.) The potential outcomes from this have ranged from mild warming of the global climate to the end of life on earth as we know it. I would wager that there is a fat tail of predictions that map the most disastrous outcomes. Many of these predict existential events.

Warning, normative statement: If there is a significant probability any one of these predictions coming true, humanity should coordinate to prevent this from happening.

One possible solution is by removing the human factor entirely. If there are no humans, there can be no anthropogenic climate change. This is also an existential event; therefore, I will ignore the potentiality of this being doable. I should note that many movements that proclaim a retrogression to primitive human civilizations are equivalent to the removal of humanity. How? No one ever states how far back we must go to not affect the world. Even going back a few centuries of economic evolution requires the elimination of billions of lives. Who decides who gets to live? How this is any better than allowing for future climate catastrophes to take their toll on humanity. This moral implications of this philosophy make it unacceptable.

Solution number two involves in doing nothing, or perhaps increasing our carbon production, which would end in any number of mild to existential level events.

Solution three involves using the resourcefulness of humanity to produce outcomes which are less severe than those being predicted. Even if the probabilities are currently set. moving one percentage point towards a more positive outcome is worth it. Should we do whatever is necessary to avoid the worse outcomes? I can’t answer that. What we shouldn’t do is make things worse. Specifically, if we’re looking to reduce carbon production, using fossil fuels in place of gaps in renewables or nuclear power is anathema to this goal.

Data to come later.

The Efficacy of Groups, Group Selection, and an Ecology of Plans

Richard Wagner posits that the macroeconomy is made up of an ecology of plans; I am sympathetic to his views because this allows for a framework of the economy to be seen as more than just the sum of its parts. This is because macroeconomic action is not just an aggregate of microeconomic action. The exception to this is at the very first encounters where the macro level interactions have yet to be formed (there are no institutions, formal or informal, that dictate behavior). After these are established, the micro transactions rely on the macro economy to enable them while the macro economy can only be perpetuated by the continuance of micro-level human action. One cannot exist without the other once the cycle has been initiated. Though, it is very possible that either one of these may wane in presence of the other.

The mediator between micro and macro action is that of the meso-level. Agents form themselves into groups; in fact, many agents will self-select or be selected into several groups. Families are one such type of these groups, while political parties, friendships, civic organizations, and religious congregations are all examples of groups in which any one agent can simultaneously take part. In both the public and private sphere, what causes these groups to survive throughout more than just one generation? What about an even smaller time scale, like more than a few meetings? What about Black Swan groups like the Bolsheviks? What are the behavioral mechanisms that ensure their continued survival? How does this compare to those who do not propagate for more than one life cycle?

I do believe that in the case of many of these sets, there exists a form of group selection similar to that in the evo-bio literature. Groups evolve a specific set of geno/phenotypic traits that occur at the group level instead of at the individual level. There is some argument in the evo-bio literature, but given that social systems can exhibit increasing returns to scale because of institutions or technology, I intend to sidestep their disagreements until another time. This means that a social system (a collection of groups into a very large group) is able to evolve certain traits that are different from those of another social system. I’ve argued in short essays that these traits may be readily copied by another group because knowledge is non-excludable and nonrival in nature. It has been pointed out to me that this means very little because it depends not on transference of knowledge but on the use of knowledge. I can’t agree more given that most people today have access to the entirety of human knowledge via a device in their pockets, but instead of using it for the advancement of our species, many play video games or feed a dopamine addiction. (This is pot calling the kettle black; I guilty of both of these.)

What I propose is an extension of Dr. Wagner’s hypothesis: the ecology of plans matters at the meso-level as well. Groups have plans. They are a way to lower the transaction costs of many people into a singular goal. Some of these groups seek domination of an entire economic system, others simply want to enjoy the fellowship of their members. I think I’ve mentioned Ostrom’s rules on common pool resources; these extend to efficacy of groups. In future posts, I hope to work out some agent based modelling of this.

Sidebar for myself: Demand will eventually create a supply through a variety of mechanisms and processes that necessitate the actions of entrepreneurial agents, but the converse is not true.